Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Speech recognition is very challenging in student learning environments that are characterized by significant cross-talk and background noise. To address this problem, we present a bilingual speech recognition system that uses an interactive video analysis system to estimate the 3D speaker geometry for realistic audio simulations. We demonstrate the use of our system in generating a complex audio dataset that contains significant cross-talk and background noise that approximate real-life classroom recordings. We then test our proposed system with real-life recordings. In terms of the distance of the speakers from the microphone, our interactive video analysis system obtained a better average error rate of 10.83% compared to 33.12% for a baseline approach. Our proposed system gave an accuracy of 27.92% that is 1.5% better than Google Speech-to-text on the same dataset. In terms of 9 important keywords, our approach gave an average sensitivity of 38% compared to 24% for Google Speech-to-text, while both methods maintained high average specificity of 90% and 92%. On average, sensitivity improved from 24% to 38% for our proposed approach. On the other hand, specificity remained high for both methods (90% to 92%).more » « less
-
Mirrokni, V (Ed.)Signal estimation problems with smoothness and sparsity priors can be naturally modeled as quadratic optimization with L0-“norm” constraints. Since such problems are non-convex and hard-to-solve, the standard approach is, instead, to tackle their convex surrogates based on L1-norm relaxations. In this paper, we propose new iterative (convex) conic quadratic relaxations that exploit not only the L0-“norm” terms, but also the fitness and smoothness functions. The iterative convexification approach substantially closes the gap between the L0-“norm” and its L1 surrogate. These stronger relaxations lead to significantly better estimators than L1-norm approaches and also allow one to utilize affine sparsity priors. In addition, the parameters of the model and the resulting estimators are easily interpretable. Experiments with a tailored Lagrangian decomposition method indicate that the proposed iterative convex relaxations yield solutions within 1% of the exact L0-approach, and can tackle instances with up to 100,000 variables under one minute.more » « less
-
Abstract Charged-particle trajectories are usually reconstructed with the LHCb detector using combined information from the tracking devices placed upstream and downstream of the 4 T m dipole magnet. Trajectories reconstructed using only information from the tracker downstream of the dipole magnet, which are referred to as T tracks, have not been used for physics analysis to date. The challenges of the reconstruction of long-lived particles with T tracks for physics use are discussed and solutions are proposed. The feasibility and the tracking performance are studied using samples of long-lived$${\Lambda }$$ and$$K_S^0$$ hadrons decaying between 6.0 and 7.6 m downstream of the proton–proton collision point, thereby traversing most of the magnetic field region and providing maximal sensitivity to magnetic and electric dipole moments. The reconstruction can be expanded upstream to about 2.5 m for use in direct searches of exotic long-lived particles. The data used in this analysis have been recorded between 2015 and 2018 and correspond to an integrated luminosity of 6 $$\hbox {fb}^{-1}$$ . The results obtained demonstrate the possibility to further extend the decay volume and the physics reach of the LHCb experiment.more » « less
-
Context. Gravitational waves from black-hole (BH) merging events have revealed a population of extra-galactic BHs residing in short-period binaries with masses that are higher than expected based on most stellar evolution models - and also higher than known stellar-origin black holes in our Galaxy. It has been proposed that those high-mass BHs are the remnants of massive metal-poor stars. Aims: Gaia astrometry is expected to uncover many Galactic wide-binary systems containing dormant BHs, which may not have been detected before. The study of this population will provide new information on the BH-mass distribution in binaries and shed light on their formation mechanisms and progenitors. Methods: As part of the validation efforts in preparation for the fourth Gaia data release (DR4), we analysed the preliminary astrometric binary solutions, obtained by the Gaia Non-Single Star pipeline, to verify their significance and to minimise false-detection rates in high-mass-function orbital solutions. Results: The astrometric binary solution of one source, Gaia BH3, implies the presence of a 32.70 ± 0.82 M⊙ BH in a binary system with a period of 11.6 yr. Gaia radial velocities independently validate the astrometric orbit. Broad-band photometric and spectroscopic data show that the visible component is an old, very metal-poor giant of the Galactic halo, at a distance of 590 pc. Conclusions: The BH in the Gaia BH3 system is more massive than any other Galactic stellar-origin BH known thus far. The low metallicity of the star companion supports the scenario that metal-poor massive stars are progenitors of the high-mass BHs detected by gravitational-wave telescopes. The Galactic orbit of the system and its metallicity indicate that it might belong to the Sequoia halo substructure. Alternatively, and more plausibly, it could belong to the ED-2 stream, which likely originated from a globular cluster that had been disrupted by the Milky Way. Full Table B.1 and Table B.2 with Gaia epoch data are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/686/L2more » « less
An official website of the United States government

Full Text Available